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Exact Results for the Universal Area Distribution of
Clusters in Percolation, Ising, and Potts Models
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At the critical point in two dimensions, the number of percolation clusters of
enclosed area greater than A is proportional to A~!, with a proportionality con-
stant C that is universal. We show theoretically (based upon Coulomb gas
methods), and verify numerically to high precision, that C =1/ (8\/§7z=
0.022972037...). We also derive, and verify to varying precision, the corre-
sponding constant for Ising spin clusters, and for Fortuin-Kasteleyn clusters of
the Q =2, 3 and 4-state Potts models.

KEY WORDS: Percolation; Ising model; Potts model; universality; conformal
field theory; Coulomb gas methods.

1. INTRODUCTION

It is often useful to characterize critical systems by their geometric proper-
ties, for example the distribution of cluster sizes which appears to follow a
power law

n,~ Bs™* €))

asymptotically for large s, where n, gives the number of clusters of s con-
nected sites, per lattice site. The exponent 7 is a universal quantity whose
value is the same for all systems of a given class—for example, ¥’ for all
critical percolation systems in two dimensions, no matter what lattice or

percolation type is considered as long as the rules are sufficiently local. The
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coefficient or amplitude B however is non-universal, varying from lattice to
lattice.

Indeed, n, cannot have a completely universal form because it is
written in terms of a lattice-level measure, the mass s. Different lattice
structures have different typical site densities at the lattice level and corre-
spondingly different values of B. In order to characterize the size distribu-
tion of clusters in a way that circumvents the site-level description, the
authors of ref. 1 considered (for the case of two-dimensional percolation)
the quantity Nr(4,, > £) = N(£) which gives the number of clusters whose
maximum x- or y-dimension £, is greater or equal to a given value ¥,
divided by the total system area, .o/ = O(L?*). They argued that for
L > £ > a (where a is the lattice spacing), this quantity should behave as

N ¢
N() ~ 7 2

with the coefficient C being a universal quantity, identical for all 2d per-
colating system at the critical point. The universality of C follows heuristi-
cally from the idea that N represents a macroscopic measure of the large
clusters of the system, and remains well defined in the limit @ — 0, in which
the lattice disappears. The proportionality to 1/¢% is a consequence of the
self-similarity of the fractal percolating system, and can also be derived by
the following argument (in d dimensions): from (1) it follows that the
number of clusters whose mass is greater than s scales as s' 7, and because
s ~ 0P where D is the fractal dimension of the clusters, the number of clus-
ters whose length scale is greater than ¢ scales as £°1~9, or £~ by virtue of
the hyperscaling relation d/D =t —1. This result is valid for any critical
system where the hyperscaling relation is valid. Later we shall give other,
presumably equivalent, theoretical arguments.

Besides the maximum dimension /,, one can consider any other
macroscopic measure of the length scale of the cluster, such as the radius of
gyration or the diameter of the covering disk. For each measure, there is a
corresponding value of C.

An equivalent way to write (2) is

N(A4) ~% (<A< L? 3

where N(A) is the number of clusters (per unit area) whose area (by some
measure) is greater or equal to 4, and C depends upon the choice of that
measure. This could be the area of the smallest disk covering the cluster,
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the area enclosed by the cluster, and so on. Equation (3) is the form of the
size distribution that will be considered in this paper.
We note that (3) can also be written as®

4,~€ @
n

for 1 <<n << 1/a? where A, represents a rank-ordering of the areas, such
that A4, is the area of the largest cluster, 4, the area of the second-largest,
etc., for a system whose total area .o is defined as unity. Although the rank-
ordering necessarily starts with clusters whose area is of the order of the
area of the system, the behavior of (4) applies to clusters whose area is
much smaller than 1 but larger than the lattice element area. Equation (4)
gives the size distribution in a proper Zipf’s-law form, in which the weight
(here area) is inversely proportional to the rank. When written in terms of s,
on the other hand, the behavior of the size ranking is not a simple inverse
power as above (compare refs. 3 and 4) and also is not universal.

The various measures of the area of the clusters that were considered
in ref. 2 included the area of the square /,, x /,,, the area of a disk that just
covers the cluster, the area enclosed by the external perimeter (hull) of the
cluster, and the area enclosed by the Grossman—Aharony (G—A) hull of the
cluster (in which fjords are excluded).® (Percolation hulls are fractal with
dimension D, =7/4%" but enclose a non-fractal, Euclidean area.) For
each of these measures, a different value of the constant C applies, and the
following values were found: C(square) ~ 0.115, C(disk) ~0.104, C(G-A
hull) ~ 0.037, and C(hull) ~ 0.024. The way these different values of C were
found was that the first C(square) was measured directly on a fully
populated lattice (since the measurement of the maximum x- or y-direction
is an easy task), and then the rest were deduced (in an approximate way) by
looking at the ratio of the area measures for individually generated clusters.
It was noticed that C(disk) is close to the fractal co-dimension d—D =
5/48 = 0.1041666..., but no exact results for any of these C were obtained.

In the present paper we report on a direct numerical and theoretical
study of the constant C = C(hull) for the 2d measure of the area enclosed
by the external perimeter or hull of percolation clusters, Ising spin clusters,
and Fortuin—Kasteleyn (FK) clusters on the Potts model clusters for Q = 2,
3 and 4. (Of course, percolation corresponds to the Potts model for O =1
and the Ising model corresponds to Q =2.)

Initially, one of us predicted that for percolation

1

8\671

C:

=0.022972037... )
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Independently, the other numerically determined C = 0.022976 +0.000005,
which is completely consistent with this prediction. Additional work described
below yields 0.0229723 +0.0000010 (one standard deviation of error). This
close agreement confirms that the Coulomb gas methods that are used to
derive these results are most certainly applicable to percolation and the
Potts model. We also considered different lattices and types of percolation
to demonstrate universality.
For Ising clusters of same-spin sites, we predict the value

1
C=—~——=0.011486019... (Ising spin clusters) (6)
16 ﬁ n

exactly half the value for percolation clusters. For the Potts model with
0 =2, 3, 4, we also consider the areas enclosed by the FK bond clusters,®
and find for the corresponding values of C:

1
C= n= 0.026525824... (FK cluster, 0 =2) @)
i1
3
C= i =0.027566445... (FK cluster, 0 =3) ®)
207
1
C= P 0.025330296... (FK cluster, 0 =4) )
7

The theoretical justifications of the above predictions are based upon
considerations reported previously in ref. 9 and expanded upon in the
second section below. In the third section we describe the numerical work
we carried out to test these results; we find good numerical confirmation
for all the cases. Conclusions are given in the fourth section.

2. COULOMB GAS CALCULATION OF C

In this section we compute the universal amplitude C in the scaling
law N(A4) ~ C/ A, using Coulomb gas methods.'” These are not rigorous,
but are known to give presumably exact results for critical exponents and
other universal quantities.

While the development in the Introduction emphasizes clusters and the
areas enclosed by their external hulls, the focus will shift to both external
and internal hulls, or loops when both are taken together. A factor of one-
half will be included in the final results to compensate for this change, so
that the values for C will be applicable to just external hulls, just internal
hulls, or the average (but not sum) of the two.
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We consider a finite but large system of linear size L, and total area
o = O(L*. As will become clear, the precise geometry and boundary
conditions are not relevant to the calculation of C. L is considered to have
dimensions of length, so that the total number of sites in the lattice is of
order (L/a)? where a is the lattice spacing.

All the models we consider (percolation, Ising spin clusters, FK clus-
ters) are special cases of either the O(n) model or the Q-state Potts
model.'?

The O(n) model is most easily considered on a honeycomb lattice, and
it is equivalent to the loop gas model defined by the partition function

— total length _, number of loops
Zow= Y, X n (10)
loop configs

where the sum is over all configurations of non-intersecting closed loops on
the honeycomb lattice. This model has in general two critical points for
each n in the interval [ —2,2]: x =x,(n) (dilute phase) and x = x,,(n)
(dense phase). In particular, for n=1 and x = x_, = 1 the loops form the
hulls of site percolation clusters on the triangular lattice; for n =1 and
x = x,, they are the boundaries of critical Ising clusters. For n — 0 we get a
single self-avoiding loop, and for n =2 the loops are the steps on a surface
at the roughening transition.

The partition function of the Q-state Potts model is more easily con-
sidered on the square lattice, and it may be transformed into that of the
random cluster model, proportional to

ZQ — Z xnumber of bonds Qnumber of clusters (1 1)

cluster configurations

where x = p/(1—p). The hulls of the clusters form closed loops on the
medial lattice, a square lattice whose vertices lie at the midpoint of the links
of the original lattice. At the critical point x = x,(Q) = \@, Z, is propor-
tional to the partition function of a loop gas

ZQ o Z ( \/é) number of loops (1 2)
loop configurations
Note that both internal and external cluster hulls are counted as loops.

In both cases, then, the critical models are equivalent to loop gases
with fugacity » (resp. \@) per loop. The hulls of the FK clusters are in the
same universality class as the dense phase of the O(n) model with n = \/é

As discussed in Section 1, we are interested in the number N(A4) of
such loops, per unit area of the lattice, whose internal area is greater than
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a given A. Note that we consider 4 as having dimensions (length)?. For
A< L* we expect that N(4) has a finite limit as L — oo. In order to
obtain universal results, we also consider 4 > a®. Our computation of the
form of N(A) in this regime is in two stages: first we show, from Coulomb
gas arguments, that the total area contained in all loops behaves loga-
rithmically, oc o/ In(L/a), as L/a — oo, with a calculable coefficient; then
we argue from this that in the regime of interest N(4) ~ C/A, with C
simply related to the above coefficient.

2.1. Total Area Inside All Loops

We shall present two a priori independent arguments, both however
based on Coulomb gas methods, for evaluating the leading behavior of the
the total area in side all loops in large but finite system.

2.1.1. Wilson Loop Method

The argument of this section follows that of refs. 9 and 12, but, in
order to be self-contained, we present it again, perhaps with greater clarity.

The loop gases described above may be mapped exactly onto a height
model on the dual lattice, as follows. Each loop is assigned a random
orientation, so that a configuration of m unoriented loops corresponds to
2™ configurations of oriented loops. There is a 1-1 mapping between the
configurations of this oriented loop gas and the heights 4, conventionally
chosen to be integer multiples of 7, as follows: assign 2 =0 on the bound-
ary, and increase (decrease) ~ by n each time a loop is crossed which goes
to the left (right). The fact that the loops are closed makes this a consistent
procedure.

The weights of n (resp. \/é) associated with each loop may be taken
into account in the ensemble of oriented loops in (at least) two ways: the
most natural would be to assign equal weights ; n to each orientation: we
refer to this as the real ensemble, and denote averages with respect to this
ensemble with conventional brackets {---). However, these weights have
the considerable disadvantage of not being local when expressed in terms of
the height variables. Instead, for calculational purposes, a different weight-
ing is usually chosen, in which the phases e*™ are distributed along each
loop by assigning a phase e“//?* each time the loop turns leftwards through
an angle #. Each anticlockwise (clockwise) loop thus accumulates a total
phase e™* (resp. e ™). On summing over orientations, these account for the
loop weights as long as

n=./0=2cosu (13)
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Clearly, these weights cannot now be interpreted as probabilities, and we
refer to this as the complex ensemble. Averages with respect to this will be
denoted by [ ---].

Within each ensemble, we may view each oriented loop as carrying a
unit current in the sense of its orientation. Let J,(x, y) be the correspond-
ing current density. For example, for a current directed along a link in the
positive y-direction, located at x=0, J, =0 and J, = d(x). This current
density may be used to give a formula for the area of a single closed loop:

A== [ x=x10(y=y") J,(x, 9) (&', y) dx dy dx' dy' (14)

This formula is valid for any non-self-intersecting loop, and is independent
of its orientation. If however we now consider the same quantity evaluated
for a given configuration of a gas of many loops, and we sum over the
orientation of each loop independently, J,(r) J, (') will average to zero if r
and r’ are on different loops. Thus the expression

— [ =180y =)<, %, ) S+, )y dPr (15)

where <---> denotes the average over the loop gas ensemble, gives the
mean total area {4, » inside all loops.

What is the current density J,(r) in the height model parametrization
of the configurations? Let us imagine that the definition of the height
function A(r) is extended to R? in such a way that it is constant within each
plaquette. An obvious candidate is then J, = (1/7x) €, 0,h. Within the real
ensemble, this is clearly correct. It is easy to see that {J,(r)>) =0 on
summing over orientations of a given loop which passes through r.
However, in general [J,(r)] # 0. Consider the average over orientations in
the complex ensemble for a fixed configuration of unoriented loops:

[J]ocl-e®+(=1)-e™#0 (16)

Instead, we have to consider a different operator as representing the
current in the complex ensemble: j, oc €, 0,e 2/ wwhich now gives

[jloc (e —1)e"+(e*—1)e™=0 (17)

as required. In Coulomb gas language, j has charge —2ia/n. Since there
must be overall charge neutrality, this is balanced by a charge +2io/7
distributed on the boundary.
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However, the orientation-averaged two-point function {J(r) J(r")) is
not correctly represented by [j(r) j(r')], since once again this has the
wrong charge. Instead we should take

T(r) () = LT, (r) j, ()] (18)

Note that this does vanish when r and r’ are on different loops, by virtue of
(17). The constant 4 is fixed by requiring that, for a fixed long loop whose
sides at x and x' are parallel to the y-axis, after summing over orientations,
I, (x, ) J,(x', y)) = —nd(x) 6(x'). The factor n arises from the sum over
loop orientations in the height model. This gives

M(1—e) e —(1—e*) e ™) = —n (19)

so that 4 = n/(4isin o).

All of this is exact, on the lattice. The weights in the height model are
local but complicated, involving as they do the phase factors e*™®. The
central assumption of the Coulomb gas approach is that, for the purposes
of studying the long-distance behavior of correlation functions, they may be
replaced by the continuum measure exp(—S), with S =(g/4n) | (0h)* d’r.
The parameter g may be determined by a number of methods"*') to give
g=1—a/n,sothatn = \@ = —2 cos(7g). The correct branchesare 1 < g <2
for x,;, and 0 < g < 1 for x,,.

Within this free field theory, it is straightforward to compute the cor-
relation function [J,(r) j,(r')] in terms of the Green function G(r—r') =
[A(r) (r')] ~ —(1/g) In |[r—7'|. First note that

hr) e = 5 CEID ) gy 0)
p=0 2
© —2i P
- S ooy @
~ (2ia/7g) In |r—r'| [e~24C/7] (22)
= (2ia/7g) In |r—F'| (23)

The last equality follows because of the way the phase factors enter the
sum over orientations, so that [e %**?/7] = 1. We thus find that

[J.(r) j,(r")] = (2ida/7°g) €,,€,,0,0, In |[r—7| (24)
. 2RICR0' éka'
= (21/10L/n2g) eyrcéva <T—P> (25)
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where we have introduced R = r—r'. After a little algebra we therefore find

R,R,—}R%,,

Ju(r) 1,(r)) = ke(n) R (26)

This form of the 2-point correlation function of a conserved current is in
fact dictated by rotational invariance, but it is the coefficient k(n) which is
the main result: written in terms of g it is®

n(l—g) _2(g—1D
ng sin(ng)

k(n) = cot(ng) 27

Substituting this result into (15), we notice that the result would
appear to diverge logarithmically at r = r'. However, this is an artifact of
the continuum approximation: the result (26) is valid only for separations
|r—7'| > a. Since the potential divergence is logarithmic, the amplitude of
the leading term is insensitive to the precise nature of the modification at
shorter distances, and therefore we may impose a simple cut-off |[r—r'| > a
on the integral. Similarly, the precise form (26) becomes invalid for separa-
tions O(L), but the short-distance leading logarithm Ina must always
appear in the form In(a/L), on dimensional grounds, independent of the
precise geometry. Thus the mean total area within all loops behaves as

(4> = (k(n)/2) o In(L/a)+O(1) (28)

where .7 is the total area of the system.

As shown in ref. 9, in any simply connected region £ the right-hand
side of (28) is proportional to 3", (1/4,,), where the A, are the eigenvalues
of—laplacian in #, with Dirichlet boundary conditions. The leading term
always has the universal logarithmic behavior shown above. Up to a non-
universal constant which may be absorbed into the cut-off a, the O(1)
remainder is universal and depends only on the shape of #. For example,
for a rectangle it is related to modular forms.

2.1.2. Relation Between Total Area and the Mean Depth

In this section we show how the leading behavior of {A4,, > may also
be found using methods of conformal field theory on a cylinder, as an
extension of the results of ref. 13. Let us define, for a given configuration
of unoriented loops, the “depth” d(r) of a given site on the dual lattice to
be the minimum number of loops which must be crossed to connect r to the

® There is a misprint in the corresponding equation in ref. 9.
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boundary. That is, it is the number of noncontractible loops surrounding r.
In the height description, it is the supremum of A(r)/m over all possible
orientations of the given set of loops. As with A(r), we may extend the
domain of definition of d(r) to the continuum plane by assuming that it is
constant over each plaquette of the dual lattice. Then a little thought shows
that the total area within all loops is simply

A = [ d(r) dr (29)

so that we need to evaluate {d(r)). We do this by first evaluating
d(r,r")>, where d(r,r") is the minimal number of loops which separate
distinct points r and ' in the infinite plane. By translational invariance this
is a function of r—r' only. Let us conformally map the plane into a cylin-
der of perimeter 2z via the usual mapping w=1Inz. As |[r—r'| > oo the
images of these points are far apart along the cylinder, and d(r, r') is
therefore asymptotically the same as the number of loops which wrap
around the cylinder between these points.

From the point of view of the height model with complex weights,
these loops must in any case be treated separately, since the factors of
e*1%/2% a]] cancel, so that each orientation is, a priori, counted with weight 1.
As is well known, this may be compensated for by inserting operators
e/ at opposite ends of the cylinder. The free energy per unit length then
is —c/12, where ¢=1—(6/g)(a«/n)%. The first term comes from the
Casimir effect of the fluctuations of the A-field, while the second is the
correction due to the flux between the charges at either end. This then gives
the correct result for the central charge c.

Let us now count the loops which wind around the cylinder with a

weight n' =2 cos o', instead of weight n = \/é =2cosa. The free energy
per unit length will be simply modified by an additional term

of =(1/2n°g)(a* —o?) (30)

The mean number of loops which wrap around the cylinder, per unit
length, is then found by taking n'(0/0n’) of this expression and setting
n' = n. Transforming back to the plane, {(d(r,r')) is given by this same
coefficient, multiplying In(|r — 7’|/ a). After a little algebra we then find

d(r,r')) ~ (k(n)/2) In(|r —r'| /), (€2

where k(n) is given by Eq. (27). The logarithmic dependence of this func-
tion also follows from the work of ref. 14, who derived that dependence
from general scaling arguments but did not find the coefficient given above.
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This result, of course, applies to the number of loops separating r and r’
in the infinite plane. However, notice that it has a logarithmically divergent
dependence on a, which comes from loops which are much smaller in size
than |r—r'|. This same divergence should arise if we now consider the
number of loops separating a given point r from the boundary in a large
but finite system, for all points whose distance from the boundary is much
larger than a (but still much less than L). We conclude that

j d(r)) d*r ~ —(k(n)/2) o/ Ina~ (k(n)/2) o In(L/a), 32)

where the last statement holds because L is the only dimensionful param-
eter available to compensate a. This gives a second derivation of Eq. (28).

We note in passing that {d(r, 7)Y = (1/7)* {(h(r)—h(r"))?), in the
height representation. The fact that this behaves logarithmically with |r —#'|
is consistent with the hypothesis that, in the continuum limit, the heights are
distributed according to a gaussian ensemble exp(—(1/27k(n)) j (Vh)* d?r)
in the real ensemble, even though the lattice weights are nonlocal. How-
ever, this hypothesis is incorrect: as may be shown by extending the above
calculation on the cylinder to higher moments, the cumulant

{(h(r)=h(r"))*y = 3{(h(r) = h(r"))*)* ~ const. In([r—'| /@), ~ (33)

and does not vanish as it would in a gaussian ensemble. However, note that
this cumulant decays faster than each term on the left hand side, so that
asymptotically the distribution of d(r) is normal, as was proved by Kesten
and Zhang."”

2.2. Relation Between kand C

In this section we first show how the logarithmic behavior of {(A4,,>
provides further justification for the assertion that N(A)~ A~ for
a®> << A << L?, then show how to relate the coefficients. Recall that N(A) is
the number of loops with area greater than A4, divided by the total area of
the system. For 4 ~ L? this will also depend on L, so let us write it as
N(A, L). On dimensional grounds it has the form

N(4,L)=(1/A) F(A/a* L/a) 34)

where a is the lattice spacing. For a®> < 4 << L? we expect it to be inde-
pendent of L, but, a priori, it could depend on a. In this regime, let us
suppose it has the form

N(A4, L) ~2C(1/ A)(A/a>)® (35)
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where C is a constant and w is some exponent. This is not of course the
most general dependence which is possible, but is that which would arise if,
for some reason, the area scaled non-trivially with a, that is, had a fractal
structure. Such dependence, with w # 0, would for example occur in the
distribution of masses, rather than of areas, of percolation clusters. The
form (35) should of course connect smoothly onto the behavior for 4 ~ a?,
when we expect that N — const., and 4 ~ L?, where N — 0.
Now the total area A4,, within all loops is related to N by

Atot = z N(A, L) (36)

Comparing with (28), we see that the contribution to the sum from the
region a* < A ~ L* will exceed O(In(L/a) if @ > 0, and similarly the con-
tribution from a*~ 4 << L? will violate this bound if w < 0. Therefore
w=0, and N(4)~2C/A for a®> << A << L*. Admittedly, this argument
assumes the ansarz (35), and the reader may be more comfortable with the
hyperscaling argument put forward in the Introduction. However, inde-
pendently of the validity of (35), our argument shows that if N(4) ~ C/A,
then the coefficient C is related to k(n). For then the leading contribu-
tion from the region a> << A << L? is 2C In(+//a*) ~4C In(L/a), so that
comparing once again with (28),

C =k(n)/8, (37)

with k(n) given by (27).

For percolation cluster hulls and FK clusters in the Q-state Potts
model, we take n= \@ = —2 cos g in the dense phase 0 < g <1, which
yields g=2,2,2, 1 for Q0 =1, 2, 3, and 4, respectively. For critical Ising spin
clusters, we take n=1 in the dilute phase where 1 < g <2, so that g= g
Then by (27) we find the values of C given in Section 1 and also listed in
Table I (taking the limit in the case Q =4). The logarithmic corrections
that appear for the case Q = 4 are derived in the Appendix.

Table I. Predicted and Measured Values of C for Various Systems

Cluster type C (theoretical) C (measured)
Percolation 1/8 \/3 7 =0.022972037... 0.0229721(1)
Ising spin 1/16 \/3 7 =0.011486019... 0.01149(5)
Ising FK 1/127 = 0.026525824... 0.0265

Q =3 Potts FK \/g/ZOn =0.027566445... 0.0278

0 =4 Potts FK 1/4n* = 0.025330296... 0.0258
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3. NUMERICAL RESULTS

To test these predictions, we carried out numerical studies of percola-
tion on square and triangular lattices with both site and bond percolation,
and the Ising/Potts models on the square lattice. For percolation we con-
sidered two ways to generate the clusters: populating the entire lattice, and
individual hull generation.

3.1. Bond Percolation—Full-Lattice Population Method

In the full-lattice population method, we first assign all bonds on the
lattice as occupied or vacant with probabilities p or 1— p, respectively, and
then carry out all possible hull walks around these bonds. These walks go
from the center to center of each bond along the diagonals, as shown in
Fig. 1, and turn by an angle +x/2 when the center of an occupied bond
is encountered, and by —/2 when the center of a vacant bond is encoun-
tered. Each walk is completed when it returns to its beginning step.

For bond percolation on the square lattice, we used a square lattice of
size 512 x 512 with periodic boundary conditions, with p at the threshold
1/2. We simulated 107 samples, amounting to a total of 5.2 x 10'? bonds
occupied or not. We used the R9689 random number generator of ref. 16.
In the computer program we employed an array of size 2048 x 2048, so that
we had distinct array locations to represent the bonds and each diagonal
leg of the hull walks.

[ ]
L a

4
Iy
/ —
’
\//’«%
v v
[

Fig. 1. Hull paths for bond percolation, with enclosed shaded areas of } (top left), 1 (top
right), 2 (bottom left) and 2; (bottom right). These are all external hulls—the last case also has
an internal hull of area % (not shown).
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The enclosed area of a hull walk was found “on the fly” by the
following method: Initially, the area is set equal to zero. When the walk
steps to the right, the area is increased by one-half the y coordinate at the
center of the diagonal step (where we had an array point), and decreased
by one-half the y coordinate when the walk steps left. The zero point of the
y coordinate is irrelevant, because its value cancels out. The factor of 1/2
comes from the fact that each leg of the hull walk changes the x-coordinate
by +1/2; we are taking the spacing of the bond lattice to be unity. When
the walk closes, this algorithm gives the area of the enclosed space, with a
sign attached: positive areas correspond to external hulls that surround
clusters, and negative areas corresponds to internal hulls (which are of
course external to the clusters on the dual lattice).

The smallest area is 1/2; for positive area this corresponds to the hull
around an isolated site (one with no bonds attached), and negative 1/2
corresponds to the hull inside a square of four occupied bonds, or equiva-
lently around an isolated site on the dual lattice. The area of all the hulls
are in units of 1/2. (Alternately, one could consider the lattice spacing to
be ﬁ; then the hulls would all have integer areas, and the system area
would be 2L2)

Because we use periodic boundary conditions, there is the possibility
that some hulls could wrap around the torus once or more before closing
into a loop. The areas for such loops are undefined, unless taken in pairs,
but in any case we discarded them because we are interested in clusters
whose size is much smaller than the size of the system.

We found the statistics for internal and external hulls were identical
(within numerical error), as one would expect for this self-dual system, and
took the average of the two.

For small 4 we kept track of the quantity N, = the number of loops
(per unit area) whose enclosed area is exactly 4, where 4 =%, 1, %, 2,... .
According to (3), this quantity should behave as

N, =N(4)—N(A+1/2) ~%

(3%
so that 242N, ~ C for large A. The results are given in Table III for 4 < 5.

To check these results, we derived the exact expressions for N, for
1< A <2 given in Table II. These are for an arbitrary bond occupancy of p,
with g =1—p. For A=1---3 these expressions are identical to the expres-
sions for the number of clusters (per site) containing b=24—1 bonds,
which are well known."'® For larger 4 we had to make modifications
to the bond cluster expressions to take into account graphs that contain
internal open spaces with vacant bonds, which result in areas larger than
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Table Il. Exact Results for N,(p) for Bond Percolation on the Square Lattice at
Occupancy p=1 - q, for A=]...3

NI

A4 N,(p)

3 q'

1 2pq®

5 6p%q*

2 P’(44°+18¢")

3 P*(q*+329°+55¢")

3 P3(8¢"°+30g"+ 160g" + 174¢™)

] P5(12¢" +40¢2+332¢™ + 67245+ 5704'%)

4 205" + p"(2¢°+ 136" + 168¢™ + 33645 + 203045+ 2712¢" + 19084')

g 20p7q" + p¥(22¢'2 + 1864 + 84445 + 8684'° -+ 406447 + 99724 % + 108804 + 6473¢%°)

1 A=13/2

Fig. 2. Clusters contributing higher-area terms to polynomials in Table II. Solid lines repre-
sent occupied bonds, dashed lines are vacant bonds, and the dotted lines trace out the external
hull. These are the graphs that have to be “moved” in the usual cluster polynomials from
A= (b+1)/2 (where b is the number of bonds) to higher 4 due to the existence of enclosed
open spaces.
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(b+1)/2. We subtracted the term 2p°q" from N; and added it to N, to
account for the area of an open 1x 2 rectangle, whose external hull area
is 4, not 7/2. Likewise, the term 20p’q" (the 1 x 2 rectangle with an extra
bond attached) was subtracted from N, and added to N,/,,. Finally, the
terms 42p%q*, 114p%¢*, and p3¢'®, which correspond to various graphs
with area greater than 9/2, were subtracted from N,,. These various
diagrams are shown in Fig. 2. This shifting of terms has the effect of
making N, follow asymptotically the exponent —2 of (38) rather than the
exponent —t = —2.055... followed by #,.

Taking p=1/2 and multiplying by 24> we arrive at the estimates
for C listed in Table III. The agreement with our numerical results is
excellent—within the small statistical error. Interestingly, the convergence
of these estimates is rather quick—already, at 4 = 5, the result is within 6%
of the (presumably) exact value.

To analyze the data for larger A, we considered the quantity
N(A4,2A4) = the number of clusters whose enclosed area is greater or equal
to 4 and less than 24. According to (3), this quantity should behave as

N(A4,24) = N(4)—N(24) ~ % (39)

so that 2AN(A4, 24) ~ C for large A.

The measured values of 24AN(A4,2A) are given in Table IV. They
monotonically decrease to a value 0.0229860(45) for 4 =2048, but then
slightly increase at 4 = 4096; for larger A, the increase continues, as seen in
Fig. 3, (upper curve) where the data from 4 = 128 to 16384 are shown. We

Table Ill. Values of 2A%N, for Small A for Bond Percolation on the Square Lattice:
Two Algorithms and Exact Results. Errors in Last Digit Are Given in Parentheses

A Full Lattice Single Hull Exact Results
1/2 0.0312500(1) 0.031247(3) 1/32=0.03125
1 0.0312500(1) 0.031252(4) 1/32=0.03125
3/2 0.0263674(1) 0.026363(4) 27/1024 =0.026367188
2 0.0253907(2) 0.025398(5) 13/512 = 0.025390625
5/2 0.0257491(2) 0.025744(6) 3375/2 =0.025749207
3 0.0254749(3) 0.025477(6) 3339/2'7 =0.025474548
7/2 0.0249188(3) 0.024917(7) 104517/2% = 0.024918795
4 0.0249898(4) 0.025004(7) 6551/2"% = 0.024990082
9/2 0.0247714(4) 0.024778(8) 13298985/2% = 0.02477129

5 0.0245659(5) 0.024557(8)
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Table IV. Values of 2AN(A, 2A) for Bond Percolation on
the Square Lattice for the Two Algorithms
A Full Lattice Single Hull
1/2 0.0625001(1) 0.0625022(42)
1 0.0429689(1) 0.0429634(32)
2 0.0306645(2) 0.0306677(26)
4 0.0270220(2) 0.0270226(25)
8 0.0250527(3) 0.0250528(25)
16 0.0240647(4) 0.0240635(25)
32 0.0235504(6) 0.0235463(26)
64 0.0232785(8) 0.0232740(27)
128 0.0231360(11) 0.0231412(28)
256 0.0230598(16) 0.0230616(29)
512 0.0230218(22) 0.0230212(31)
1024 0.0229968(32) 0.0229948(32)
2048 0.0229860(45) 0.0229849(33)
4096 0.0229882(63) 0.0229785(35)
0.02315
0.0231 —
z 0.02305 —
N’«
< J
Z.
<
- 0.023 _
0.02295 —
022 ‘ ‘
0.0 9() 0.005 0.01 0.015

A-(].875
Fig. 3. Plot of 2AN(A4, 24) vs. A~*%" for bond percolation on a square lattice. Upper data
points: lattice population method. Lower points (shifted down by 0.00005): single hull
generation method.
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attribute this increase to interference of clusters with themselves around the
periodic boundary conditions, and thus ignore these data. Fitting the 5
data points from 4 = 128 to 2048 as a function of 4% to a straight line,
we find a good linear fit with 8 = 0.875 as shown in that figure, with the
equation of the line given by

2AN(A,2A4) =0.0229712+0.011484 %% (40)

implying C = 0.0229712.

We estimate the error in the above value of C to be ~ 107 from the
statistical error of the data and the uncertainty in the extrapolation to
infinity. The predicted value (5) falls within these error bars.

In terms of the length scale ¢ ~ A?, the above exponent corresponds
to a correction of the order £, which is the scaling of the hull of the
cluster. Indeed, this finite-size correction can be interpreted as a surface
effect,! reflecting the arbitrariness in locating where precisely the hull of
the cluster should be placed.

As a test of our procedure, we also compared our measurement of the
total number of loops (hulls of both type) per unit area (=~ twice the
number of clusters) with the theoretical result, which for bond percolation
on the square lattice is given by the Temperley—Lieb result@®2V

Y N, ~3./3-5=0.196152422... (A1)
A

Our measured value was 0.1961572(14), larger than the above prediction
by only 0.0000048(28). This difference corresponds to an excess number of
1.2 loops per lattice (found by multiplying the latter number by 512%),
which is barely discernible above the statistical error of +0.7. In fact, this
correction can also be predicted theoretically. For a system with a rectan-
gular boundary of aspect ratio r, the excess number of clusters is a known
function b(r).*"?? To find the excess number of loops, note that the quan-
tity n,+n, —n; (the number of clusters, plus the number of dual lattice
clusters, minus the number of loops) equals 1 if there is a cross-configura-
tion on the lattice or the dual lattice, and zero otherwise. Thus it follows
that the excess number of loops is just 2b(r)—2x, (r), where 7 (r) is the
cross-configuration probability, which has been calculated by Pinson.®
For a square system, the excess number of loops is predicted to be

2[b(1)—7, (1)] = 2(0.883576 —0.309526) = 1.14810 (42)

using b(1) from ref. 22 and =, (1) from ref. 1. This prediction happens to
coincide almost exactly with the measured value (even though the error



Cluster-Area Distribution in Percolation, Ising, and Potts Models 19

bars of the latter are quite large). This predicted value can be tested to
higher precision most easily by going to smaller lattices.

Besides the problem of clusters interfering with themselves, there is
also the problem in the population method that the statistics for larger
hulls are rather poor because of the relatively small number of such hulls
that are generated. In the next section we consider a method that addresses
both of these problems.

3.2. Bond Percolation—Single Hull Generation Method

It is well known that percolation clusters can be grown individually
through a process where bonds are made occupied or not only when they
are encountered (the “Leath” method). In the same way, percolation hulls
can be generated individually on a blank (undetermined) lattice by a kind
of growing self-avoiding walk that mimics the walk used to trace out
hulls.® For critical bond percolation,® the walker moves along the edges
of a square lattice (the diagonals in Fig. 1), and turns by +7x/2 or —x/2
randomly at each vertex, except at vertices previously visited, where it
always turns to avoid retracing itself. The walk terminates when it returns
to the origin and cannot proceed further. Note that pseudo-random
numbers are generated only for the bonds that are visited during the walk,
making this method efficient. This walk has also been studied as a kinetic
Lorentz-gas model,® and the results here apply to that model also.

In order for the contribution of a given hull to be the same as on the
fully populated lattice, it is necessary to weight each walk by 1/¢, where ¢ is
the number of hull steps. This compensates for the fact that a hull of ¢ steps
is generated with ¢ times the probability in the single cluster method
compared to the population method, because there are ¢ places a given
walk can start from.

This weighting can also be checked as follows: The probability of
generating a closed hull of at least # steps is given by®”

P(t) ~ct™/7 43)

where ¢ is a constant. Defining a Euclidean length scale £ ~ ¢/?# it follows
that the area enclosed by the walk scales as 4 ~ £> ~ t¥?# = ¢3/7_ Thus, the
probability of growing a walk enclosing at least area A scales as 47'/%, so
that the probability of growing a walk of exactly area 4 scales as 4~°/%,
When we weight a hull by the factor 1/t~ 47"/%, we thus get the proper
probability 4A=°/8~7/8 = 472 as given in (38).

In our simulations, we considered square lattices of size L x L with
periodic b.c. This is the lattice of the hull walks, which is rotated by =/4
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from the square bond lattice, and has a spacing that is ﬁ /2 of the bond
lattice spacing. Note that the square system boundary here corresponds to
a diamond on the bond lattice. We stopped all walks that did not close
by 65536 steps, and kept track of the areas of all the walks that closed
before this cutoff, without wrapping around the periodic b.c. All walks that
were stopped at the cutoff would ultimately enclose an area of at least
65536/8 = 8192, taking into account that there are at most 4 hull steps
around each wetted site, and each square on the hull-walk (rotated) lattice
corresponds to an area of 1/2.

While the statistics of walks of areas smaller than 4 = 8192 should
thus be unbiased by having this cutoff, they can still be biased by the finite-
size of the lattice. For runs on lattices of size 1024 x 1024 and smaller, we
found both wraparound clusters and large deviations in the hull statistics
for larger A. Even for lattices of size 2048 x 2048, where no wraparound
occurred with this cutoff, we still found significant, obviously finite-size
deviations even for N(A4,2A) for A below 4 =28192. We attribute these
deviations to hulls making contact with themselves around the periodic
b.c., without actually closing to wrap around. Therefore, to be absolutely
certain of no finite-size effects, we went to a lattice of size 65536 x 65536
using the virtual lattice method of ref. 24. We checked that with the cutoff
of 65536 steps, indeed no walk got anywhere near the boundary of the
system.

We carried out 1.8 x 10° walks on this lattice, which, like the simula-
tions for the 107 fully populated lattices, took several weeks of workstation
computer time. A total of 3.2x 10" hull steps simulated here, compared
with 1.0 x 10" in the simulations of the populated lattices. The algorithm
for the single-hull method is somewhat simpler and more efficient than that
for the lattice population method.

In the single-hull method, larger hulls are generated with a higher
probability than in the lattice-population method: the number generated
in the interval (4, 24) (before reweighting) is proportional to 4~"/% here,
compared with 4!, This is advantageous because the large hulls with their
small finite-size effects are essential for finding C accurately. On the other
hand, in the single-hull method a large fraction of time is spent on the
walks that reach the cutoff before they close (and are discarded): Eq. (43)
implies that the total number of steps for all the hulls that reach the cutoff
foax ETOWs as ~ ct%7 while the total number of steps for all the hulls that
close before ¢, is given by

‘max dP
jt z<—z) dt~% 6/7 (44)
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Thus, no matter what the value of the cutoff is, a fraction 6/7 = 85.7% of
the work (ignoring finite-size effects) is spent generating walks that reach
the cutoff without closing and are thus discarded. Still, for very large
cutoffs this overhead is compensated by the increase in useful statistics for
large A, making this method advantageous.

Note that, in our simulations of 3.2 x 10" hull-walk steps, the fraction
of those steps belonging to clusters that reached the cutoff z,,,, = 65536 was
6.000124 /7, with the deviation from 6 in the numerator being about equal
to the apparent statistical error, ~ 0.0001. This result seems to provide a
very precise confirmation that the exponent in P(z) is indeed —1/7 (i.e.,
the hull fractal dimension is D, = 7/4), although to quantify the precision
of this result one would have to investigate different values of the cutoff
tax to determine the finite-size corrections.

For small 4, results for 242N, are given in Table III agree with the
exact values, confirming that the 1/¢ weighting is correct. Because the
single hull method gives fewer of these small hulls than the lattice pop-
ulation method, these results have larger error bars. Here use used
(N ,(total))™'/?, where N ,(total) is the total number of clusters of size 4, to
estimate the error bars.

Likewise, the results for N(4, 24) for all A, given in Table IV, are seen
to agree with the lattice population results. For the largest size ranges, the
single-hull method is seen to give better error bars (and are not biased by
finite-size boundary effects).

A plot of the 2AN (A, 2A4) vs. A7%% for 128 < A < 4096 is also given in
Fig. 1 (shifted down by 0.00005), and the data are fit by the linear function
given by

2AN(A,2A4) = 0.0229692+0.011974 %% (45)

which is consistent with the results of the lattice population method (40).
The error bars on the intercept is about the same, 1075,

Thus, although the single-hull method is in principle advantageous, for
the system size we considered we obtained C with about the same precision
as the lattice population method, with about the same amount of work.
However, the single-hull method allowed us to show that the curvature in
the behavior of 24N (A, 2A4) for large A as seen in Fig. 1 was indeed due to
cluster interference around the periodic boundaries.

Assuming the predicted value of C given by (5), we can also make a
plot of log(2AN(A4,24)—C) vs. log(A4) (not shown); with single-hull data
we find good linear behavior with a slope —8 = —0.88+0.01, which is
consistent with the value 0.875 that we have been using.
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3.3. Site Percolation on the Square and Triangular Lattices

We also carried out simulations of site percolation on two different
lattices to demonstrate the universality of the result (5) for C.

For site percolation, the logical choice for the hull walk around a
cluster is to follow a path on the medial lattice whose vertices are at the
center of the faces of the lattice, as shown in Fig. 4 for the square and
triangular lattice. This choice allows the single isolated site to have a non-
zero area, and is symmetric for internal and external hulls for the triangular
lattice.

For the square lattice, we carried out 4 x 10® samples on a lattice of
size 256 x 256, using the weighted single-hull method. (In our program we
employed a computer array of size 512x 512 to include the sites of the
medial lattice.) With such a small lattice, finite-size effects appeared for
hulls with A4 larger than~ 1024. We used occupancy probability p=
0.592746, which is close to the critical threshold for this system.® Here we
generated the hulls starting from a segment between a single occupied and
vacant site, which occurs in a populated system with a probability of
p(1—p). The latter factor was therefore included in the total weight of each
hull, along with the 1/¢ weight, where here ¢ is the number of steps along
the medial lattice.

(a)

N\
D

(b)

Fig. 4. Medial lattices used for hulls in site percolation: (a) square lattice, (b) triangular
lattice, and (c) brick-lattice form of triangular lattice.
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We found that the statistics for internal and external hulls are quite
different, as one would expect by the asymmetry of this system. For
example, for A =1, N, = p(1—p)*~0.0163053 for an external hull, and
N, = (1—p) p®=~0.00620604 for an internal hull. This large difference per-
sists as A increases, and suggests that some other definition of the hull
which gives more symmetric results between external and internal hulls
might be advantageous.

In Fig. 5 we show 24AN(4, 2A4) for the two kinds of hulls, along with
their average. Taking the average is the same as including both types of
hulls in the area calculation (and dividing by two). Indeed, in the theoreti-
cal development in Section 2, both internal and external hulls were
included in the calculation, so it is appropriate to take this average. The
finite-size corrections to the average measure again followed a behavior
with exponent close to —0.875, which was used in the plot in Fig. 5. The
line in that figure is fit by the equation

2AN(A4,24) =0.022976—0.01144 %7 (46)
0.028
0026 A A A A A .
0.024 |- =
i \9‘9—\—@\_6\6 i
<
> 0.022- =
< - -
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Fig. 5. Plot of 2AN(A, 24) vs. A~ for site percolation clusters on a square lattice: exter-
nal hulls (triangles), average (circles) and internal hulls (squares). The equation of the line fit
through the average points is given in Eq. (46).
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where the unit of area is one square lattice spacing on the square lattice.
The average measure extrapolates (for large 4) to a value ~ 0.022976, in
obvious agreement with the theoretical prediction, and making a more
precise determination rather superfluous.

Note that, the coefficient to the correction term is similar in value to
the coefficient for bond percolation, even though a different kind of path
was used to define the hulls in the two cases. The similarity might be a
coincidence, or it might reflect a fundamental equivalence of perimeter
corrections for site and bond percolation on this lattice.

For site percolation on the triangular lattice the medial lattice is a
honeycomb lattice with a hexagon around each vertex of the triangular
lattice as shown in Fig. 4. To implement this in the computer, we used the
square-lattice form of the honeycomb lattice, also shown in that figure,
where the hexagons become rectangular bricks and a single site on the
triangular lattice now becomes a pair of sites on the square lattice. Thus,
we could use the same basic algorithm as we used for site percolation on
the square lattice, with the only modification being that sites are occupied
or made vacant in pairs, with a probability 1/2.

For this case (the triangular lattice) we used the lattice-population
method on an underlying square lattice of size 1024 x 1024 with periodic
b.c. We generated 2.4 x 10® independent samples. As expected, the internal
and external hulls had equal statistics, within error, reflecting the symmetry
of this system.

Again, the data closely followed the 4~°%° behavior, and we do not
plot it. Fitting the data in the range 2° < 4 < 22 (where A4 is measured in
square-lattice units, so that the smallest hexagon corresponds to 4 = 2) we
found the following behavior:

24AN(A,2A4) = 0.022977—0.01464 %7 @n

again agreeing with the predicted value of C. In this case, that value is
approached from below for finite systems, with the definition of cluster-
hull area used here.

3.4. Ising Clusters

To study the clusters of the Ising model, we considered a square lattice
of size 1024 x 1024 with periodic b.c., and simulated the system at the cri-
tical temperature of exp(—J/kT) = 1+f (where J is the coupling con-
stant in the Potts model formulation, H =—J 34,6, ) using the Wolff
variation® of the Swendsen-Wang method.®” We initialized the lattice
with 1000 updates, and then measured the hull area distribution treating
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the system exactly as if it were one of site percolation, using the same
definition of hull areas as shown in Fig. 2. This was followed by 10-100
Wolff updates, and the procedure was repeated. 140,000 realizations were
generated.

As in the site percolation case, we found rather large differences
between internal and external hulls, as seen in Fig. 6. Here we also found
very large deviations for large 4, presumably reflecting stronger correla-
tions due to the interaction. (Indeed, runs on a smaller 256 x 256 lattice
showed even stronger large-A deviations.) The average measure for the
smaller hulls is consistent with the 47%%"° finite-size scaling used in that
figure, and a fit of the points for 4 = 2 through 16 yields the straight line as
shown in that figure, given by

2AN(A, 24) = 0.011487 +0.004458 40575 @8)

The intercept is nearly identical with the predicted value of C (6), in spite
of the rather small size of clusters that were used. We estimate the error in
the intercept to be +0.00005.

0.014

0.0135 — —

0.013 — =
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0.012
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0 0.05 0.1 0.15 0.2 0.25

0.875
A

Fig. 6. Plot of 2AN(A,2A4) vs. A~ for Ising clusters: external hulls (triangles), average
(circles) and internal hulls (squares). The line is fit through the four rightmost points of the
average values.
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3.5. FK Clusters on the Potts Model for Q=2, 3, and 4

We also studied the FK clusters on the Potts model at the critical

temperature e’/ = 1 +\@. These clusters are the bond percolation clusters
when bonds are drawn between neighboring identical spins with a probability

1—e 7/ = \/é /(1 +\/§). We defined the hulls exactly as in the square-
lattice bond percolation case (Fig. 1) and indeed could use the same algorithm
to trace out and measure the hulls after the bonds have been specified.

To thermalize the system, we used the Swendsen—Wang (SW) proce-
dure of identifying all FK clusters on the lattice and then randomly reas-
signing their spins. Indeed, the FK hull measurements and the SW update
method naturally go hand in had in this calculation, since the identification
of the FK clusters is needed for the SW method. For Q=2 and Q0 =3 we
used a lattice of size 512 x 512 and obtained the results shown in Figs. 7
and 8, where once again we find large discrepancies between internal and
external clusters, and take the average of the two. That average is found to
fall on a nearly straight line when plotted as a function of 477 taking
0 =0.875 for Q=2 and 6 =0.7 for Q = 3. The extrapolated exponents are
seen to approach the expected theoretical values, as shown in Table I. We
simulated 82, 000 samples (Q = 2) and 1,000,000 samples (Q = 3).
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Fig. 7. Plot of 2AN(A,2A4) vs. A~ for FK clusters of the Ising model (Q=2 Potts):
external hulls (triangles), average (circles) and internal hulls (squares).
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Fig. 8. Plot of 2AN(4, 24) vs. A7 for FK clusters of the Q=3 Potts model: external hulls
(triangles), average (circles) and internal hulls (squares).

Note that the discrepancy between internal and external hulls reflects
an inherent asymmetry for FK clusters of the Potts model in finite periodic
systems for Q > 1. This asymmetry is also manifested in the behavior of the
fraction of bonds that are occupied, which in finite systems has a value
somewhat greater than the infinite-system value of 5.

For Q =4, very large differences between internal and external hulls
persisted even for relatively small values of 4 on the 512 x 512 lattice, so
we went to a larger lattice of size 2048 x 2048 (20,000 realizations) which
improved the behavior somewhat. Even for this lattice, however, large
finite-size effects were apparent. Similar large finite-size corrections have
been seen in other Potts model studies at Q =4 (e.g., refs. 31 and 32) and
are generally expected to be logarithmic in character. In Appendix A we
calculate these corrections analytically for this case and find

N(A)~£<l

2a,

" (In4)2

- +0((In A)‘3)> (49)

where a, is a constant. The above result implies that 2AN(A4, 24) =
C+0((In A)72). In Fig. 9 we plot our results for 24N (A, 2A) as a function
of (In A)~2 The data fall on a straight line for large 4, and the intercept
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Fig. 9. Plot of 2AN(A4, 2A4) vs. (In A)~2 for FK clusters of the Q=4 Potts model: external
hulls (triangles), average (circles) and internal hulls (squares).

yields C = 0.0258, which is comparable to our predicted value of 1/4n*=
0.0253....

Note that if we plot the data versus 1/In 4, we find about as good of a
fit to linear behavior for large 4, but then the intercept would 0.0231, quite
a bit below the predicted value of C. Likewise, if we fit the data to a power-
law as we did for other values of Q, we find fairly linear behavior with an
abcissa of 47%5, but now the intercept is 0.0279. Thus, the data is consistent
with our prediction for C combined with the predicted 1/(In 4)? finite-size
scaling.

4. CONCLUSIONS

We derived and numerically confirmed predictions for the behavior of
the area-size distribution of various Potts model including percolation
clusters. For the latter, we also considered different lattices and percolation
types (site and bond) to demonstrate universality. The theoretical ideas
presented in Section 2 were well verified numerically, especially in the per-
colation and Ising model cases. For Q =4, our results were consistent with
the logarithmic finite-size behavior predicted here.

This work confirms the idea of a universal size distribution expressed
by Eq. (3). An alternate way to state that result is as follows: Consider that
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the unit of area is now some value 4 much smaller than the lattice size
(which is therefore no longer of unit area). Then, (3) implies that the
number of clusters whose enclosed area is greater than A, per unit area A,
is a constant C, for all values of A. The lack of dependence on A is a direct
consequence of the scale-free nature of this fractal system.

The arguments put forward in Section 2.1.2 also imply that the
number of cluster hulls which must be crossed to connect a typical point
deep inside the system to the boundary behaves as 4C In(L/a), where L is
the system size, with same value of C for each universality class. So, for
example, the fact that C for critical Ising spin clusters is half that for per-
colation clusters means, according to Zipf’s law, that the nth largest cluster
is the Ising case has roughly half the area of the nth largest percolation
cluster. This is consistent with the fact that we have to cross one half as
many cluster hulls to reach the boundary in the Ising case. It might suggest
that we may go from the ensemble of percolation hulls to those of Ising
clusters simply by erasing every other percolation hull, e.g., by ignoring all
the internal hulls! This however is not the case, as percolation hulls have a
different fractal dimension from those of Ising clusters.

The form of (3) is also consistent with the existence of the universal
amplitude ratio, R =[a(l —a)(2—a) £ 14 &,, where « is the free-energy
critical exponent, & is the critical part of the free energy per unit area, and
&, is the amplitude for the correlation length.®® For any value of Q in the
random cluster model, 0% /0Q gives the mean total number of clusters
per unit area 3, n, =Y, N,. At the critical point, N, ~ —N'(4) ~ C/A*
for A>>a? and near the critical point one expects a scaling law N, =
A7*D(A/E?), where ®(u) is some nontrivial scaling function with ®(0) = C,
which decays exponentially fast as u — oo. This gives, on substitution into
24N~ s;oz N, dA4,

Y n, ~ const.+ BE 2 (50)

where the constant is nonuniversal, as it depends on the details of the
cutoff, and

B=j°°¢(”)—2_cdu. (51)
0 u

Equation (50) is of the form expected from hyperscaling,®® with B=
(Rf)?*/Jo(1 —a)(2—a)] directly related to the universal combination R}
(recently given exactly for percolation by Seaton®¥). However, we see that
it is given by a certain integral over a nontrivial scaling function, while C is
just one limiting value of this function.
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The results presented here represent the first examples where a
measure of the cluster size distribution is given exactly (in the asymptotic
limit), both in exponent (here, simply —1) and amplitude (the value C).
The agreement between the theoretical prediction and the numerical results
for percolation (to a relative accuracy of better than 10~%) compares well
with other precision tests of conformal field theory predictions for percola-
tion amplitudes, for example the crossing formula®” (where the results
have been confirmed within a relative error of about 107?).4%39 Knowing
the exact result for C at the critical point allows finite-size effects and
behavior away from the critical point to be studied, without at the same
time having to determine these critical parameters. In percolation especially
there has been great interest in size distributions and their finite size
corrections, so this result should be useful in that field.

APPENDIX A: LOGARITHMIC CORRECTIONS FOR Q=4

We summarize the arguments leading to Eq. (49). It has long been
known that many critical quantities in the 4-state Potts model exhibit
confluent logarithmic corrections. In the RG framework, this is explained
by the existence of a marginally irrelevant scaling variable.®® A general
formalism for computing the form of these corrections was developed in
ref. 39, was taken further in ref. 40, and recently has been applied to the
fractal properties of O =4 FK clusters by Aharony and Asikainen.“ In
general,® logarithmic corrections to susceptibilities take the form of mul-
tiplicative powers of logarithms, and are therefore numerically very signi-
ficant, but in some quantities, for example the finite-size scaling of the free
energy at the critical point,“? they give only additive corrections. We shall
argue that this is the case here.

Following ref. 42, suppose that the fixed-point hamiltonian is deformed
by a marginal perturbation J#* — #*+g > ®(R), where @ is a scaling
operator with scaling dimension x, = 2. We may develop the current-current
correlation function (18) in a power series in g, the coefficient of each term
being a sum over the R; of correlation functions {J,(r,) J,(r,) P(R,)),
I (ry) J,(ry) D(R)) D(R,)), and so on, each evaluated with respect to
the fixed point hamiltonian. The form of the r, and r,-dependence of each
of these correlation functions is completely fixed by conformal invariance
in two dimensions, so that they may be computed in a simple model.
Choosing a gaussian theory with hamiltonian #*=1{(9¢)*>d*, a con-
served current J, ~0,¢, and the marginal operator &~ (9¢)> all the
correlators may be evaluated using Wick’s theorem. For the O(g) correc-
tion, it turns out that the only non-zero components (in complex coordinates)
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have u =z, v=Z, and vice versa. The form of the correlation function is

(Jz1) J:(2,) D(0)) oc 1/(2123) (52)

where we have set R, = 0 for convenience.
Now the O(g) correction to the total area within all loops (15) is

gJ‘ <Jy(Zl) Jy(Z_Z) D(R))) |%1 — x| 6(y, — ;) dx, dx, dy, dy, dZRl (53)

where J, oc J, —J;. This is to be evaluated in a large but finite region of
linear size O(L). As before, we shall use the infinite volume continuum
limit form (52) of the correlation function, justifying this a posteriori. The
integral in (53) is then proportional to the area ./ of the system, and
we remove this factor by setting R, =0. The remaining integral is then
proportional to

© |1 — ;|
dx, dx, d 54
f—w (x1+iy1)2 (xz_iJ’1)2 YR AR >4

The contour integration over y, vanishes unless x; and x, have the same
sign: the result is then proportional to

j jw =l e, = j “;ﬁqn(L/a) (55)

(1 — xz)3

with an equal contribution from x,, x, <0. We have cut off the logarith-
mically divergent integral in the last step, arguing that because the diver-
gence is only logarithmic, it was permissible to use the infinite-volume
forms for the correlation function in the integrand.

The important point about this result is that it is O(gIn L), not
O(g(In L)?), as might have been expected (recall that the leading term is
0(g°In L)). A similar, but more tedious, calculation shows that the next
term is O(g?1n L), and we conjecture that the nth order term is O(g" In L).
This is consistent with the fact that, in the gaussian model, g is exactly
marginal so that k, the coefficient of the O(In L) term, depends continu-
ously on g.

However, in the 4-state Potts model the perturbation is not exactly
marginal, and instead flows logarithmically slowly to zero under the RG.
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This may be taken into account? by replacing the bare expansion param-
eter g by the running coupling

g

m’v (b In L)71+0(g71(11'1 L)iz) (56)

gL)=
where b is a known constant whose value is not important.
Inserting this result into the formula (15) for the total area {4, ) ~

of ZA<0(L2) N(A) gives

A<;(L2)N(A)~2c1nL<1 llL i L)2+0((1nL) 3)) (57)

where the g; are non-universal constants. Differentiating this with respect
to L* ~ A then gives the main result quoted in (49)

c 2a, .
N(A)~Z< (In A)2+0((1nA) )> (58)

The interesting feature of this result is the absence of the O((In 4)™") term,
proportional to a,.
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